2019/TDC/EVEN/ECOHC-202T/061

TDC (CBCS) Even Semester Exam., 2019

ECONOMICS

(2nd Semester)

Course No. : ECOHCC-202T

(Mathematical Methods in Economics-II)

Full Marks: 70 Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. Answer any two of the following questions: 2×2=4
 - (a) Define differential equations.
 - (b) Write the general solution of differential equation of the form

$$\frac{dy}{dx} + ay = b$$

(c) Solve the following equation:

/2183

(Turn Over)

2. Solve the following equations:

(a)
$$y(1-x) - x \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} + 3x^2y = 3x^2$$

(c)
$$2xdy + \frac{2}{3}ydx = 0$$

OR ARCH

when p is the price,
$$Q_d$$
 is quantity demanded and Q_d is the quantity

demanded and Qs is the quantity supplied, are given as

$$Q_d = a - bp \qquad (a, b > 0)$$

$$Q_s = -c + dp \qquad (c, d > 0)$$

 $\frac{dp}{dt} = \alpha (Q_d - Q_s)' \quad (\alpha > 0)$

Analyze the market model for stability. Solve
$$\frac{d^2y}{d^2y} = \frac{dy}{dy}$$

(b) Solve $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$.

$$\frac{3}{1x} + 12y = 0$$

UNIT-II

4. Answer any two of the following questions:

Find the following determinant's value:

(a)

(b)

J9/2183

(Continue

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

find $A^2 - 5A + 71$.

(b) Evaluate:

$$A = \begin{vmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 2 & 0 & 2 \end{vmatrix} = 0$$

(c) Prove that if

$$A = \begin{bmatrix} 2 & 8 \\ 4 & 10 \end{bmatrix}$$

then
$$A^{-1} = \begin{bmatrix} -\frac{10}{12} & \frac{8}{12} \\ \frac{4}{12} & -\frac{2}{12} \end{bmatrix}$$

OR O

6. (a) Using matrix inversion, solve the following linear system of simultaneous equations:

$$y-2x=6$$

$$y+4x=18$$

$$Q_d = 50 - 2p$$

$$Q_s = -10 + 3p$$

$$Q_d = Q_s$$

9/2183

(Turn Over)

б

3

GRCOLLEGE, AC

Unit—III

- 7. Answer any two of the following questions:
 - (a) Define differentiable function.
 - (b) Find the total differential of $z = \sqrt{x+y}$.
 - (c) If $u = (ax_1 + bx_2 + c\sqrt{x_1x_2})$, find $\frac{\partial u}{\partial x_1}$.
- 8. (a) Solve the following functions:
 - Given $y = 4x_1x_2 + x_1^2$ where $\frac{dy}{dx_2}$.
 - (ii) If the utility function is $u = \log(ax_1 + bx_2 + c\sqrt{x_1x_2})$ obtain the ratio of marginal utilities.
 - (b) Given $z = x^3 e^{2y}$. Find all the partial derivatives of second order.

J9/2183

(Continue

OR

- 9. (a) What is homogeneous function?
 - (b) Given the function $u = Ax^by^c$; A, b and c are constants.
 - (i) Find the conditions under which this is a linear homogeneous function.
 - (i) Apply Euler's theorem if these conditions hold true.

UNIT-IV

10. Answer any two of the following questions:

2×2=4,

- (a) Given the function z = f(x, y), mention the first and second order conditions for maximization.
- (b) Mention the geometric definition of concavity and convexity for a two-variable function $z = f(x_1, x_2)$.
- (c) Define quasiconvex function.

/2183

1. (a) Mention the first and second order characterization of convex function with more than one explanatory variable.

(Turn Over) CERCITA

(b) Derive the first and second order conditions in order to show that 🥎 indifference curve is negatively sloped and convex to the origin taking the utility function

$$u = f(x, y)$$

where, u = total utility. x and y are the quantities of two commodities.

OR

- (a) How to construct Lagrange function?
 - A producer desires to minimize his cost of production C = 2L + 5K, where L and K are the inputs, subject to the satisfaction of the production function Q = LK. Find the optimum combination of L and K in order to minimize cost of production when output is 40.

UNIT-V

- Answer any two of the following questions:
 - Define input coefficient matrix. (a)
 - Mention Hawkins-Simon conditions.
 - Write the economic meaning of $\sum_{i=1}^{n} a_{ij} < 1$ in Leontief static open model.

J9/2183

(Continued

Given $\begin{bmatrix} 0.1 & 0.3 & 0.1 \\ 0 & 0.2 & 0.2 \\ 0 & 0 & 0.3 \end{bmatrix}$ (i) What will be the output levels if $F_1 = 20$, $F_2 = 0$ and $F_3 = 100$? (ii) Also obtain gross value added in each sector. OR Prove that in a closed Leontief system, (a) the absolute levels of output are

the absolute levels of output are indeterminate.

(b) Mention the limitations of input-output analysis.

J9_720/2182 2010/TDC/TVC-0002T/061